Identification of Structural Vector Autoregressions by Stochastic Volatility

نویسندگان

  • Dominik Bertsche
  • Robin Braun
چکیده

In Structural Vector Autoregressive (SVAR) models, heteroskedasticity can be exploited to identify structural parameters statistically. In this paper, we propose to capture time variation in the second moment of structural shocks by a stochastic volatility (SV) model, assuming that their log variances follow latent AR(1) processes. Estimation is performed by Gaussian Maximum Likelihood and an efficient Expectation Maximization algorithm is developed for that purpose. Since the smoothing distributions required in the algorithm are intractable, we propose to approximate them either by Gaussian distributions or with the help of Markov Chain Monte Carlo (MCMC) methods. We provide simulation evidence that the SV-SVAR model works well in estimating the structural parameters also under model misspecification. We use the proposed model to study the interdependence between monetary policy and the stock market. Based on monthly US data, we find that the SV specification provides the best fit and is favored by conventional information criteria if compared to other models of heteroskedasticity, including GARCH, Markov Switching, and Smooth Transition models. Since the structural shocks identified by heteroskedasticity have no economic interpretation, we test conventional exclusion restrictions as well as Proxy SVAR restrictions which are overidentifying in the heteroskedastic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Structural Vector Autoregressions via Changes in Volatility

Identification of shocks of interest is a central problem in structural vector autoregressive (SVAR) modelling. Identification is often achieved by imposing restrictions on the impact or long-run effects of shocks or by considering sign restrictions for the impulse responses. In a number of articles changes in the volatility of the shocks have also been used for identification. The present stud...

متن کامل

Time-Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum

This note corrects a mistake in the estimation algorithm of the time-varying structural vector autoregression model of Primiceri (2005) and proposes a new algorithm that correctly applies the procedure proposed by Kim, Shephard, and Chib (1998) to the estimation of VAR or DSGE models with stochastic volatility. Relative to Primiceri (2005), the correct algorithm involves a different ordering of...

متن کامل

The sampling properties of conditional independence graphs for structural vector autoregressions

Structural vector autoregressions allow contemporaneous series dependence and assume errors with no contemporaneous correlation. Such models having a recursive structure can be described by a directed acyclic graph. An important tool for identification of these models is the conditional independence graph constructed from the contemporaneous and lagged values of the process. We determine the la...

متن کامل

Sign Restrictions in Structural Vector Autoregressions : A Critical Review

S vector autoregressions have become one of the major ways of extracting information about the macro economy. One might cite three major uses of them in macroeconometric research: for quantifying impulse responses to macroeconomic shocks; for measuring the degree of uncertainty about the impulse responses or other quantities formed from them; and for deciding on the contribution of different sh...

متن کامل

Alternatives to Large Var, Varma and Multivariate Stochastic Volatility Models

In this paper, our proposal is to combine univariate ARMA models to produce a variant of the VARMA model that is much more easily implementable and does not involve certain complications. The original model is reduced to a series of univariate problems and a copula – like term (a mixture-of-normals densities) is introduced to handle dependence. Since the univariate problems are easy to handle b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018